S=-16t^2+51+69

Simple and best practice solution for S=-16t^2+51+69 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for S=-16t^2+51+69 equation:



=-16S^2+51+69
We move all terms to the left:
-(-16S^2+51+69)=0
We get rid of parentheses
16S^2-51-69=0
We add all the numbers together, and all the variables
16S^2-120=0
a = 16; b = 0; c = -120;
Δ = b2-4ac
Δ = 02-4·16·(-120)
Δ = 7680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7680}=\sqrt{256*30}=\sqrt{256}*\sqrt{30}=16\sqrt{30}$
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{30}}{2*16}=\frac{0-16\sqrt{30}}{32} =-\frac{16\sqrt{30}}{32} =-\frac{\sqrt{30}}{2} $
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{30}}{2*16}=\frac{0+16\sqrt{30}}{32} =\frac{16\sqrt{30}}{32} =\frac{\sqrt{30}}{2} $

See similar equations:

| 4h+20=24 | | 13x-17+67=180 | | 3(x-2)=2x+-6 | | 8*h=160 | | 8g-5g=3+3g | | –2u=10u= | | 11x+2+101=180 | | -9×+11=20+-6x | | 5x+7(-2x-3)=-120 | | n/4=10/6 | | y=2/3÷1 | | -2/7u=-144 | | -7x+2-3x=12-4x+7* | | 288=16*m | | 1/3-2/5x=1/3 | | x+19=2(x+13) | | n-76=121 | | n-76=21 | | 5x+7(-2-3)=-120 | | 100=4m | | -2.4x=8.5 | | 17-5r+9r=-12+8r-1 | | 3x-5(x+1)=-5-2x | | 7y+20+3y=180 | | 10=j-8 | | (15x+8)°=(21x-10)° | | 7=5+-b | | 0=-16t2+24t+6. | | 9q+6=4q-14 | | 12.8=m-3.8 | | (2x+6)+5x=8x-11 | | (6x-9)=4x+12 |

Equations solver categories